
Abstract. Adding the tight and diffuse Gaussian-type
functions (GTFs), Faegri’s variationally determined
double-zeta-quality basis sets for molecular relativistic
calculations are examined. An example atom is Cm.
When the tight s-type GTF is added the total energy
increases, whereas when diffuse GTFs are added the
total energy decreases. The reasons for these findings are
clarified. It is also pointed out that not only the Faegri’s
sets but also other variationally determined basis sets
would show similar behavior so far as the expansion
terms are not sufficient.
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In line with the development of heavy-element chem-
istry, the number of molecular orbital calculations for
lanthanoid atoms and even actinoid atoms, in which
the relativistic Hamiltonian terms are of special impor-
tance, is increasing. In such studies, suitable basis set
for the relativistic Hamiltonian must be employed.
Here, the Dirac–Fock–Roothaan (DFR) [1] method
is used as the standard all-electron four-component
relativistic recipe. There are three types of basis sets for
DFR calculations:

1. The large nonrelativistic basis set, which could be used
directly as a relativistic set [2, 3].

2. The large nonrelativistic basis set with modification
for the relativistic Hamiltonian [4] (see later).

3. Sets that are optimized energetically [5, 6, 7, 8].

We study type 3 in some detail. Dyall [5] obtained
a Gaussian-type-function (GTF) set with double-zeta-
quality for the 4p, 5p, and 6p elements, where the l) and
l+ exponents are restricted to have the same values.
Faegri [6] gave GTF sets of the same quality as Dyall [5]

for K(19) to Uno(118), imposing the further restrictions
that the s, d, and g primitive GTFs (pGTFs) share the
same exponents and the p, f, and h share another. These
are called the family sets. Koga, Tatewaki, and Mats-
uoka (KTM) [7] developed the set from H(1) to Xe(54)
in which the pGTF exponents for l+ and l) are fully
optimized. The quality of the set is high. These authors
[8] also developed the sets for Cs(55)–Hg(80).

Recently, we have been making DFR calculations on
curium fluorides (CmFx). Initially, we tried Faegri’s set
[6] for the Cm atom in primitives, which should reduce
the computational costs owing to its common exponents.
However, we found slow convergence and the intrusion
of positronic eigenvalues which is often caused by a poor
description of the wavefunctions near the nucleus. We
therefore preferred a type 2 basis set [4], although the
computations were harder. We found the numbers of the
intrusion decrease considerably. We show the charac-
teristics of two basis sets [4, 6] and investigate their
‘‘robustness’’ in molecular environments.

In this work, we employed a Gaussian nucleus model
where the nucleus radius was taken, following Visscher
and Dyall [9], as

R ¼ ð2:03952714A1=3 þ 1:39058668Þ � 10�5 bohr ;

where A is a mass number. The average energy of the
configuration [10] is used throughout the paper.

Later we see the effects of additional diffuse and tight
pGTFs on these basis sets. First we discuss the effect
of the diffuse pGTFs. Seven sets were used, as follows.
TM1: the nonrelativistic sets of Koga, Tatewaki, and
Shimazaki (KTS) [11]. TM2: modified KTS (MKTS) [4]
generated by replacing seven s and one p pGTFs of KTS
with those of hydrogenic ion DFR, and adding those
five p and one d. TM3: MKTS plus 7s¢(rpl) with two
Gaussians for the 7s spinor replaced [4]. TM4: TM3 plus
two diffuse p Gaussians (f = 0.05616 and 0.02246). F1:
the relativistic sets of Faegri [6]. F2:F1 plus diffuse one s.
F3:F2 plus two p GTFs (f = 0.0677 and 0.0251). The
DFR total energies for Cm 5f87s2 are shown in Table 1
Although the expansion terms are smaller, the Faegri set
and its derivative give lower DFR total energy values
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than the KTS, MKTS, and MKTS derivatives. To see
the influences of the added diffuse GTFs, the DFR total
energy of TM4 relative to that of TM3 which is con-
sidered to be a standard relativistic KTM basis for ac-
tinoid atoms and that of F2 and F3 relative to F1 are
also shown in Table 1. The diffuse two p GTFs in TM4
lower the DFR total energies by only 0.03 mhartree,
whereas those in F3 cause a reduction of 0.15 mhartree.
A similar energy-lowering is found for the diffuse s of
Faegri. The energy-lowering in the Faegri derivatives is
significantly larger than that in the MKTS derivatives. If
exponent optimization works properly in the relativistic
calculations, the energy lowering in Faegri plus diffuse
sp should be smaller than or similar to values for MKTS
plus diffuse sp. Inappropriate couplings of the large and
small components in the smaller sets often cause a very
large total energy-lowering (variation collapse) [1, 12,
13, 14, 15, 16, 17, 18] and the inappropriate couplings in
the larger sets give a smaller total energy-lowering, called
a prolapse [6]. The larger energy-lowerings of the diffuse
GTFs on F1 suggest that the exponent variation tightens
even the outer charge cloud through the coupling terms
of the two components. The vector space spanned by F1
may incline to an inaccurate direction. Next we discuss
the effects of a tight s.

Since a variation collapse or a prolapse is ordinarily
considered as originating from the poor description of
the spinors near the nucleus, addition of the tight s
GTFs to the set (F1) may lead to higher DFR total
energies. We add a tight s to TM4 and F1 to generate
TM5 and F4, where the ratio of the innermost two s
GTFs of the respective sets is used to determine the tight
s exponent. The results are also included in Table 1.

Inclusion of the GTF largely pushed up the Faegri set
DFR total energies (F4) but not the energies for the
MKTS derivative (TM5). Furthermore if we add the
TM5 tight s to F1, we obtain )31324.759861 hartree,
which is 6.462 mhartree higher than the total energy of
F1. Inversely if we add an F4 tight s to TM4, the total
energy is )31324.763663 hartree and the energy-lower-
ing relative to TM4 is )6.837 mhartree. Probably addi-
tion of any tight single s pGTF to F1 leads to a higher
DFR total energy. The innermost spinor energies for
5f87s2 are compared in Table 2. In F1 (Faegri), the 1s
spinor energy is close to that for numerical Dirac–Fock
(NDF). The diffuse s and p GTFs in Faegri derivatives
reduce the 1s spinor energy below that for NDF through
the improvement of 1s outer-shell interactions, indicat-
ing the F1 1s spinor energy is too low. On the other
hand, the tight s increases it, suggesting again the inad-
equacy of the inner-shell description. To close this
paragraph we compare the first seven exponents of the
F1(Faegri) and TM2 (MKTS) sets in Table 3. We recall
that in TM2, these exponents are those of Cm95+.

Table 1. Dirac–Fock–Roo-
thaan (DFR) total energies
(hartree) for Cm 5f 87s2 by var-
ious basis and energy-lowering
(millihartree) relative to TM4
or F1 for Cm 5f 87s2. The Koga,
Tatewaki, and Shimazaki
(KTS) set for the large compo-
nent is composed of 28s, 21p,
18d, and 13f primitive Gaus-
sian-type functions (GTFs) and
is denoted as 28s21p18d13f

Basis name Expansion terms 5f 87s2 DE

TM1: KTS 28s21p18d13f )31323.047120 1709.706
TM2: MKTS 28s26p19d13f )31324.756629 0.197
TM3: MKTS+7s’(rpl) 28s26p19d13f )31324.756826 0.000
TM4: TM3+two diffuse p 28s28p19d13f )31324.756858 )0.032
TM5: TM4+tight s 29s28p19d13f )31324.762673 )5.847
F1: Faegri (family) 25s21p17d12f )31324.766323 0.000
F2: F1+diffuse s 26s21p17d12f )31324.766443 )0.120
F3: F2+two diffuse p 26s23p17d12f )31324.766597 )0.274
F4: F1 + tight s 26s21p17d12f )31324.760676 5.647
NDF (Visscher and Dyall) )31324.793171

Table 2. Spinor energies (hartree) for Cm 5f 87s2

1s 2s 2p) 2p+

TM2: MKTS )4748.1209 )908.6214 )876.5222 )702.1728
TM3: MKTS+7s’(rpl) )4748.1202 )908.6208 )876.5216 )702.1722
TM4: TM3+two diffuse 7p )4748.1203 )908.6209 )876.5217 )702.1722
TM5: TM4+tight s )4748.1226 )908.6213 )876.5217 )702.1723
F1: Faegri (family) )4748.1313 )908.6267 )876.5288 )702.1768
F2: F1+diffuse s )4748.1325 )908.6279 )876.5300 )702.1780
F3: F2+two diffuse p )4748.1328 )908.6281 )876.5303 )702.1783
F4: F1+tight s )4748.1291 )908.6263 )876.5289 )702.1768
NDF (Visscher and Dyall a) )4748.1319 )908.6283 )876.5336 )702.1786
a See Ref. [9]

Table 3. Comparison of the seven innermost s exponents for Cm
5f 87s2

F1(Faegri) M2(MKTS)

s1 5.438186507 · 107 4.407308900 · 107

s2 1.406923438 · 107 1.166148700 · 107

s3 4.555919983 · 106 3.926199200 · 106

s4 1.597609222 · 106 1.450345400 · 106

s5 5.965879208 · 105 5.764630700 · 105

s6 2.317303337 · 105 2.387048700 · 105

s7 9.303663137 · 104 1.023570700 · 105
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Nevertheless the first five exponents of F1 are larger than
those of TM2. From what was discussed at the end of
the previous paragraph and just above, we can say that
exponent variations for the F1 set make the whole the
charge distribution tight. We suspect all the variationally
determined sets more or less suffer from variation
collapse or prolapse especially for the heavier atoms.

Actual molecular calculations are, however, less
stringent than those just described. We have tested the
MKTS and Faegri derivatives, using ghost F sets placed
with an optimized geometry of F2 and F3 units of CmF2

and CmF3 having molecular symmetry, D¥h and D3h.
In molecular and ghost calculations, two and three
g pGTFs are added respectively to TM4 and F3.
These are TM6 with (28s28p19d13f2g) and F5 with
(26s23p17d12f3g). The set for fluorine was 12s8p [7]
augmented with diffuse 1s, 1p, and 3d pGTFs (totally
13s9p3d), where the geometric average of exponents for
l) and l+ was used. The atomic states calculated were
Cm2+( f7s1) for CmF2 and Cm3+( f 7) for CmF3. The
DFR total energies calculated with and without ghosts
are shown in Table. 4. The two Cm basis sets give almost
the same bond length and atomization energy for these
molecules. However, the energy-lowering with the Fae-
gri derivative set by including the ghosts is 5–7 times
larger than that in the MKTS derivative set, suggesting
that this set is a little soft compared to MKTS, even in
molecular environments.

In conclusion the sets developed by Faegri give a
more contracted charge distribution than what is ex-
pected for the true Dirac–Hartree–Fock. This probably
leads to slow convergence in self-consistent-field calcu-
lations and intrusion of positronic eigenvalues when the
basis set is used in primitives. We are also afraid that
the variation collapse (prolapse) arises more often when
the inner-core excitations are treated. This comment
holds for any variationally determined basis sets unless
the sets are expanded with sufficient pGTFs.

The program used for the atomic calculations was
atomic DFR [19], and DIRAC [20] was used for mole-
cular calculations. All the calculations were performed
on the computing facilities of the Japan Atomic Energy
Research Institute, the Japan Science and Technology
Corporation, and Nagoya City University. The present
investigation was performed as part of the Earth Simu-
lator project promoted by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT) of
Japan, and was partly supported by a Grant-in-Aid for
Scientific Research by MEXT.
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Table 4. Cm DFR total energies
with and without ghost orbitals
and energy difference between
these (hartree). The atomization
energy (AE) is calculated relative
to Cm(f 7d1s2)

a The molecule is assumed to have
D8h symmetry for CmF2 and D3h

symmetry for CmF3, but the
calculations were performed
using D2h and C2v, respectively

CmF2/Cm
+2(f 7s1)

MKTS
CmF2 RCm–F 4.0077 bohr, AE 9.958 eV
Cm+2( f 7s1) + two F-ghost TE DE
TM6: TM4+2g/D2h

a )31324.125168 0.0

TM7: TM6+F-ghost/D2h
a )31324.125271 )0.000103

Faegri
CmF2 RCm–F 4.0075 bohr, AE 9.953 eV
Cm+2( f 7s1)+two F-ghost
F5: F3+3g/D2h

a )31324.131474 0.0

F6: F5+F-ghost/D2h
a )31324.131938 )0.000464

CmF3/Cm
+3( f 7)

MKTS
CmF3 RCm–F 3.9595 bohr, AE 15.066 eV
Cm+3( f 7)+three F-ghost
TM6: TM4+2g/C2v

a )31323.435632 0.0

TM7: TM6+F-ghost/C2v
a )31323.435711 )0.000079

Faegri
CmF3 RCm–F 3.9599 bohr, AE 15.057 eV
Cm+3( f 7)+two F-ghost
F5: F3+3g/C2v

a )31323.441801 0.0

F6: F5+F-oghost/C2v
a )31323.442360 )0.000559
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